
A canonical approach to the quantization of the damped harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 5591

(http://iopscience.iop.org/0305-4470/35/27/305)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/27
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 5591–5598 PII: S0305-4470(02)34178-7

A canonical approach to the quantization of the
damped harmonic oscillator

Rabin Banerjee1 and Pradip Mukherjee2

1 S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City,
Calcutta-700 098, India
2 Department of Physics, Presidency College, College Street, Calcutta-700 073, India

Received 19 February 2002, in final form 8 May 2002
Published 28 June 2002
Online at stacks.iop.org/JPhysA/35/5591

Abstract
We provide a new canonical approach for studying the quantum mechanical
damped harmonic oscillator based on the doubling of degrees of freedom
approach. Explicit expressions for Lagrangians of the elementary modes of
the problem, characterizing both forward and backward time propagation, are
given. A Hamiltonian analysis, showing the equivalence with the Lagrangian
approach, is also done. Based on this Hamiltonian analysis, the quantization
of the model is discussed.

PACS numbers: 03.65.Fd, 02.20.−a

The damped harmonic oscillator (dho) problem is characterized by the breaking of time-
reversal symmetry. A direct Lagrangian formulation is problematic because it leads to
explicitly time-dependent Lagrangians [1, 2]. The standard approach [3–5] is to complement
the dho by its time-reversed image and work with an effective doubled system. The dynamical
group of symmetry of this doubled system is found to be SU(1, 1) but no unitary irreducible
representation of the symmetry exists. Time evolution leads out of the Hilbert space of
states and a satisfactory quantization can only be achieved in the framework of quantum field
theory. This quantization procedure is based on the composite Lagrangian of the effective
system resulting from the doubling of degrees of freedom. The lack of individual Lagrangian
prescriptions leads to problems in quantization.

We present in this paper a new method of canonical quantization of the dho based on the
doubling of degrees of freedom. Explicit expressions of the Lagrangians that characterize dual
aspects of the forward and backward time propagations are given. We have shown that the two
cases of overdamped and (oscillatory) underdamped motions correspond to distinct regimes
characterized by real and complex parameters, respectively, of the constituent Lagrangians.
The Hamiltonians corresponding to the complex Lagrangians are found to be pseudo-Hermitian
[6]. We have discussed the diagonalization of the complex Hamiltonians pertaining to this
regime as a generalization of the Dirac–Heisenberg method of treating the linear harmonic
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oscillator. The breakdown of time-reversal symmetry is manifested in our analysis by the
appearence of pseudo-Hermitian Hamiltonians leading to the time evolution of the individual
modes by nonunitary operators. However, exploiting the pseudo-Hermiticity of the individual
pieces, we have shown that well behaved states of the composite system are formed.

We begin with a review of the problem of the damped harmonic oscillator (dho). The
equation of motion of the one-dimensional damped harmonic oscillator is

mẍ + γ ẋ + kx = 0. (1)

The parametersm, γ and k are independent of time. If the ratio

R = k

γ 2

4m

(2)

is greater than 1, the motion is oscillatory with exponentially decaying amplitude. Otherwise,
the motion is nonoscillatory, i.e. overdamped. Since system (1) is dissipative, a straightforward
Lagrangian description leading to a consistent canonical quantization is not available. To
develop a canonical formalism we require to consider (1) along with its time-reversed
image [3]

mÿ − γ ẏ + ky = 0 (3)

so that the composite system is conservative. Systems (1) and (3) can be derived from the
Lagrangian

L = mẋẏ +
γ

2
(xẏ − ẋy)− kxy (4)

where x is the dho coordinate and y corresponds to the time-reversed counterpart. Introducing
the hyperbolic coordinates x1 and x2 [5] where

x = 1√
2
(x1 + x2) y = 1√

2
(x1 − x2) (5)

the above Lagrangian can be written in a compact notation as

L = m

2
gij ẋi ẋj − γ

2
εij xi ẋj − k

2
gij xixj (6)

where the pseudo-Eucledian metric gij is given by g11 = −g22 = 1 and g12 = 0.
The Lagrangian (6) is invariant under the SU(1, 1) transformation

xi → xi + θσijxj (7)

where σ is the first Pauli matrix and θ is an infinitesimal parameter.
The composite Lagrangian (6) is analogous to the general bidimensional oscillator

Lagrangian

L = m

2
ẋ2
i +

B

2
εij xi ẋj − 1

2
kx2

i (8)

studied recently [8] in connection with the Landau problem. Here one exploits dual aspects
of the rotation symmetry of the problem in analysing it in terms of opposite chiralities [9].
Symmetry of (6) under (7) thus offers a possibility of analysing the composite theory in terms
of systems having opposite chiralities w.r.t. the continuous transformations (7).

Accordingly, we introduce the Lagrangian doublet

L± = ±�
2
εijxi ẋj − k±

2
gijxixj (9)
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which are separately invariant under (7). The Noether charges corresponding to the
transformations (7) are

C± = ±�
2
gijxixj . (10)

Thus systems (9) have opposite ‘chiralities’ w.r.t. the transformation (7), a fact which motivates
their introduction as possible elementary forms of (6).

The synthesis of L+ and L− is now done by the soldering formalism which has found
applications in various contexts. Duality symmetric electromagnetic actions were constructed
[10]; implications in higher dimensional bosonization were discussed [11]; the doublet
structure in topologically massive gauge theories was revealed [12]; a host of phenomena
in two dimensions were analysed [13]. However, the analysis that is closest in spirit to the one
that will be presented here, demonstrated the fusion of two one-dimensional chiral oscillators
rotating in opposite directions, into a normal two-dimensional oscillator [9]. Indeed, replacing
gij by δij in equation (9) converts it into a doublet of chiral oscillators.

We start from a simple sum

L(y, z) = L+(y) + L−(z) (11)

and consider the gauge transformation

δyi = δzi = �i(t) (12)

where �i are some arbitrary functions of time. Under these transformations the change in L
is given by

δL(y, z) = δL+(y) + δL−(z)
(13)

= �i(J
+
i (y) + J−

i (z))

where the currents are

J±
i (x) = ±�σij ẋj − k±xi. (14)

The idea is to iteratively modify L(y, z) by suitably introducing auxiliary variables such that
the new Lagrangian is invariant under the transformations (12). To this end an auxiliary field
Bi transforming as (12),

δBi = �i (15)

is introduced and a modified Lagrangian is constructed as

L(y, z, B) = L(y, z)− Bi
(
J +
i (y) + J−

i (z)
) − 1

2 (k+ + k−)BiBi . (16)

This Lagrangian is now invariant under (12) and (15). Since the variableBi has no independent
dynamics, it is eliminated by using its equation of motion. The residual Lagrangian no longer
depends on y or z individually but only on the difference y − z. Writing this difference as x,
the residual Lagrangian reproduces (6) with the identification

m = − �2

(k+ + k−)
γ = �(k+ − k−)

k+ + k−
k = k+k−

(k+ + k−)
. (17)

The essence of the soldering procedure can be understood also in the following alternative
way. Use xi = yi − zi in L(y, z) to eliminate zi so that

L(y, x) = −k+

2
gijyiyj − �

2
εij [−2yiẋj + xiẋj ] − k−

2
gij [yiyj − yixj − xiyj + xixj ]. (18)

Since there is no kinetic term for yi it is really an auxiliary variable. Eliminating yi from
L(y, x) by using its equation of motion we directly arrive at (6) with the correspondence (17).



5594 R Banerjee and P Mukherjee

Note that the opposite chirality of the elementary Lagrangians is crucial in the cancellation of
the time derivative of y in (18), which in turn is instrumental in the success of the soldering
method.

The identification (17) has an immediate consequence. The ratio (2) is found to be

R = k

γ 2

4m

= 1 − (k+ + k−)2

(k+ − k−)2
. (19)

For real k+, k−, the parameters identified by (17) correspond to an overdamped motion of the
dho3. Also note that to get the coefficients m and k to be positive we require k+ and k− to be
of opposite sign, with a suitable choice of their absolute values. Finally, for positive γ, � > 0
is required.

Now the physically more important situation is the underdamped motion of the dho where
the motion is oscillatory with decaying amplitude. Here the parameters of (6) are such that
the ratio R > 1. As already observed, this condition cannot be simulated by the identification
(17) for real values of k±. However, if k+ and k− are continued to complex values so that

k+ = κ k− = κ∗ (20)

R = 1 +

(
Re κ

Im κ

)2

(21)

then R > 1, which is the required condition for oscillatory motion. Now equation (17) gives

m = − �2

2Re κ
γ = i�Im κ

Re κ
k = |κ |2

2Re κ
. (22)

Taking κ of the form

κ = κ1 + iκ2 (23)

with κ1,2 positive, we find that � must be purely imaginary,

� = −ig g > 0 (24)

so that the parameters in (22) are positive. Substituting (20) and (24) in (9) we get the
elementary modes

L+ = −i
g

2
εijxi ẋj − κ

2
gijxixj (25)

L− = i
g

2
εijxi ẋj − κ∗

2
gijxixj (26)

the soldered form of which is the Lagrangian (6) pertaining to the oscillatory limit.
Remarkably, the Lagrangians L± are now complex conjugates of each other.

The Lagrangians (25) and (26) both contain information about forward and backward
motion in time. To see this, we write L+ in the form

L+ = −igx1ẋ2 − κ

2

(
x2

1 − x2
2

)
(27)

from which the Euler–Lagrange (EL) equations follow as

igẋ2 = −κx1 (28)

igẋ1 = −κx2. (29)

3 See the discussion below (2).
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According to equations (22), (23) and (24) we have
κ1

g
= 	 and

κ2

g
= γ

2m
(30)

where

	 =
(

1

m

(
k − γ 2

4m

)) 1
2

. (31)

The solutions to (28) and (29) are easy to find. Using (30) these solutions can be written in
terms of the physical parameters of the dho. Now substituting in (5), we get

x = A exp
(
− γ

2m
t
)

exp(i	t) (32)

y = A exp
( γ

2m
t
)

exp(−i	t). (33)

Clearly, x and y correspond to forward and backward time propagation with reference to the
doubling of coordinates (see (1) and (3)). The same solutions also follow from L−. In this
connection it may be observed that Lagrangians structurally similar to (25) and (26) were
discussed in [5], as the m → 0 limit of (6). However, it is to be stressed that they are not
quite identical because the coefficients of (25) and (26) are completely different from that of
the limiting form of (6). This is clearly revealed by the calculation of the friction coefficient
presented in [5], which comes out to be different from that of the actual damped oscillator.

It will be instructive to look at the problem from the Hamiltonian approach. The
Hamiltonian following from (6) is

H = 1

2m

(
p1 − γ

2
x2

)2
+
k

2
x2

1 − 1

2m

(
p2 +

γ

2
x1

)2
− k

2
x2

2 (34)

where p1 = mẋ1 + γ

2 x2, p2 = −mẋ2 − γ

2 x1 are the canonical momenta conjugate to x1 and x2,
respectively. Introduce a canonical transformation from (x1, x2, p1, p2) to (x+, x−, p+, p−)
where

p± =
( ω±

2m	

) 1
2
p1 ± i

(
m	ω±

2

) 1
2

x2

(35)

x± =
(
m	

2ω±

) 1
2

x1 ± i

(
1

2m	ω±

) 1
2

p2.

Such transformations, though involving only real parameters, were used in [12, 14]. Now the
composite Hamiltonian diagonalizes as

H = H+ +H− (36)

where

H± = p2
±

2
+
ω2

±x
2
±

2
(37)

with the frequencies ω±,

ω± = 	± iγ

2m
. (38)

The Hamiltonians H± can be shown to follow from the Lagrangians L±. Indeed, the
Lagrangian (27) is already in the first-order form. Thus we can read off the Hamiltonian
directly,

H+ = κ

2

(
x2

1 − x2
2

)
(39)
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with the symplectic algebra

{xi, xj } = − i

g
εij . (40)

From (40) we find that igx1 is canonically conjugate to x2. Now by a canonical transformation
to the set (x, px) defined by

x1 = − i√−κ px x2 =
√−κ
g

x (41)

the Hamiltonian (39) becomes

H+ =
(
p2
x

2
+
ω2

+x
2

2

)
(42)

where we have used equations (23), (30) and (38). The above Hamiltonian coincides with H+

of (37). Similarly we can derive H− from L−. The correspondence between the Lagrangian
and Hamiltonian formulations is thus complete.

A question may arise regarding the interpretation of the complex HamiltoniansH± found
in the constituent pieces. The first point to note is that they satisfy

H
†
± = H∓. (43)

This Hermitian conjugation property corresponds to the time-reversal operation that connects
the doubled degrees of freedom of the closed theory. Also, this property manifestly ensures
the Hermiticity of the complete Hamiltonian (36).

AlthoughH± are not Hermitian, they are pseudo-Hermitian [6],

H
†
± = ηH±η−1 (44)

where η is the PT operator. Such Hamiltonians have occurred in the study of PT-symmetric
quantum mechanics [7], in minisuperspace quantum cosmology and other constructions [6].
To prove the condition (44) note that

ηxiη
−1 = gijxj ηpiη

−1 = −gijpj . (45)

The HamiltoniansH±, given by (37), are of the form

H = p2

2
+
ω2

2
x2 (46)

where x and p are non-Hermitian and ω is a complex number. Under η = PT the operators x
and p transform as

ηxη−1 = x† and ηpη−1 = −p†. (47)

Now define

a =
√
ω

2

(
x +

ip

ω

)
(48)

and

ã = η−1a†η =
√
ω

2

(
x − ip

ω

)
. (49)

Here ã is aptly called the pseudo-Hermitian adjoint of a with respect to η. Writing

N = ãa (50)

we get

H = ω
(
N + 1

2

)
. (51)



A canonical approach to the quantization of the damped harmonic oscillator 5597

From the basic commutators between the canonical variables x and p it is easy to derive that

[N, a] = −a
(52)

[N, ã] = ã.

Also

η−1N †η = N. (53)

Assume that we can construct a complete bidimensional eigenbasis {|ψn〉, |φn〉} diagonalizing
N:

N |ψn〉 = n|ψn〉
N †|φn〉 = n∗|φn〉

(54)
〈φn|ψm〉 = δnm∑

|φn〉〈ψn| =
∑

|ψn〉〈φn| = 1.

Due to (51) this is also the eigenbasis of the Hamiltonian. Now using the commutation
relations it can be shown that

N(a|ψn〉) = (n− 1)a|ψn〉. (55)

Hence we can write

a|ψn〉 = c|ψn−1〉 (56)

where c is some c-number. Similarly

〈φn|ã = d〈φn−1|. (57)

The pseudo-Hermiticity of N can be exploited to relate η|φn〉 with |ψn〉 because

Nη|φn〉 = nη|φn〉. (58)

Using the first equation of (54) we find, up to a phase, the following identification:

η|φn〉 = |ψn〉. (59)

The correspondence (59) enables us to reach a crucial result

〈φn|ã|ψn−1〉 = 〈φn−1|a|ψn〉∗ (60)

which, along with (56) and (57), gives

d = c∗. (61)

The last result can be used to show that

n = |c|2. (62)

We find that the eigenvalues of N are real and positive. We can also argue that it is integral,
otherwise repeated application of a would yield a negative eigenvalue of N. Thus, there exists
a state |0〉 which is annihilated by a:

a|0〉 = 0. (63)

Due to (51) this state is the ground state of the Hamiltonian. From the ground state |0〉 one
can develop all the higher energy states by repeated application of ã.

From the above solution of the eigenvalue problem of (46) we can build the physical states
of the composite system by forming direct products. Observe that due to (43) the eigenbasis
of H− will be {|φn〉, |ψn〉} if the eigenbasis of H+ is {|ψn〉, |φn〉}.
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Any formulation of the dho is based on the direct [1] or indirect representation [3–5]. The
direct representation leads to Lagrangians having an explicit time dependence; hence these are
not very popular. The indirect representation avoids this problem by a doubling of the degrees
of freedom. It is called indirect because taking the composite Lagrangian and varying one
degree of freedom yields the equation of motion for the other degree (see (4) and its relevant
equations of motion). The usual composite Lagrangian, by construction, is two dimensional.
It incorporates both forward and backward time propagations. Individual one-dimensional
Lagrangians displaying these properties were non-existent.

The new point in our paper is that we have provided explicit one-dimensional Lagrangians
(equations (25) and (26)) that characterize both forward and backward time propagations.
Although structurally these Lagrangians look two dimensional, the symplectic structure
effectively reduces to one dimension. Moreover we showed that a combination of these
Lagrangians led to (6). In this sense these Lagrangians are more fundamental. Also, they
cannot be obtained by taking the simple m → 0 limit of (6). In the region of the parameter
space which corresponds to the damped oscillatory motion, the parameters of the constituent
Lagrangians were complex valued. Also, these Lagrangians were complex conjugates of
one another. Because of this property, the resulting Hamiltonians were complex valued,
satisfying the requirements of pseudo-Hermiticity. This pseudo-Hermiticity was exploited
to diagonalize the individual Hamiltonians. Based on this, an alternative quantization of the
damped harmonic oscillator was indicated.
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